Multicolored Parallelisms of Isomorphic Spanning Trees
نویسندگان
چکیده
A subgraph in an edge-colored graph is multicolored if all its edges receive distinct colors. In this paper, we prove that a complete graph on 2m (m = 2) vertices K2m can be properly edge-colored with 2m − 1 colors in such a way that the edges of K2m can be partitioned into m multicolored isomorphic spanning trees.
منابع مشابه
Multicolored Isomorphic Spanning Trees in Complete Graphs
In this paper, we first prove that if the edges of K2m are properly colored by 2m− 1 colors in such a way that any two colors induce a 2-factor of which each component is a 4-cycle, then K2m can be decomposed into m isomorphic multicolored spanning trees. Consequently, we show that there exist three disjoint isomorphic multicolored spanning trees in any properly (2m−1)-edge-colored K2m for m ≥ 14.
متن کاملMulticolored parallelisms of Hamiltonian cycles
A subgraph in an edge-colored graph is multicolored if all its edges receive distinct colors. In this paper, we prove that a complete graph on 2m + 1 vertices K2m+1 can be properly edge-colored with 2m+ 1 colors in such a way that the edges of K2m+1 can be partitioned intommulticolored Hamiltonian cycles. © 2009 Published by Elsevier B.V.
متن کاملCounting the number of spanning trees of graphs
A spanning tree of graph G is a spanning subgraph of G that is a tree. In this paper, we focus our attention on (n,m) graphs, where m = n, n + 1, n + 2, n+3 and n + 4. We also determine some coefficients of the Laplacian characteristic polynomial of fullerene graphs.
متن کاملProperly Colored Geometric Matchings and 3-Trees Without Crossings on Multicolored Points in the Plane
Let X be a set of multicolored points in the plane such that no three points are collinear and each color appears on at most ⌈|X|/2⌉ points. We show the existence of a non-crossing properly colored geometric perfect matching on X (if |X| is even), and the existence of a non-crossing properly colored geometric spanning tree with maximum degree at most 3 on X. Moreover, we show the existence of a...
متن کاملOn relation between the Kirchhoff index and number of spanning trees of graph
Let $G=(V,E)$, $V={1,2,ldots,n}$, $E={e_1,e_2,ldots,e_m}$,be a simple connected graph, with sequence of vertex degrees$Delta =d_1geq d_2geqcdotsgeq d_n=delta >0$ and Laplacian eigenvalues$mu_1geq mu_2geqcdotsgeqmu_{n-1}>mu_n=0$. Denote by $Kf(G)=nsum_{i=1}^{n-1}frac{1}{mu_i}$ and $t=t(G)=frac 1n prod_{i=1}^{n-1} mu_i$ the Kirchhoff index and number of spanning tree...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Discrete Math.
دوره 20 شماره
صفحات -
تاریخ انتشار 2006